Abstract Submitted for the DNP15 Meeting of The American Physical Society

High Efficiency Spin Flipper for the n3He Experiment CHRISTO-PHER HAYES, Univ of Tennessee, Knoxville, N3HE COLLABORATION — The n^3 He experiment, constructed on the Fundamental Neutron Physics Beamline (FnPB) at the Spallation Neutron Source, is designed to measure the parity violating (PV) proton asymmetry A_p in the capture reaction

$$n + {}^{3}\text{He} \longrightarrow {}^{3}\text{H} + p + 765 \,\text{keV}$$
 (1)

The asymmetry has an estimated value $A_p \sim -1 \times 10^{-7}$ and is directly related to the weak isospin conserved couplings h_{ρ}^0 and ω_{ρ}^0 which are of fundamental interest in the verification of the meson exchange model of low energy NN intereactions. Data production for the n³He experiment began in February 2015 and is scheduled to continue thru December 2015 – reaching a statistical sensitivity $\delta A_p \sim 10^{-8}$ or better. I will discuss the spin flipper which is designed using the theory of double cosine-theta coils, and capable of flipping neutron spins with an efficiency approaching its maximum value $\epsilon_{sf} = 1$. I will also discuss the theory of Spin Magnetic Resonance (SMR) and how it is employed by the spin flipper to flip 60 Hz pulses of cold neutrons over a range of wavelengths.

Christopher Hayes Univ of Tennessee, Knoxville

Date submitted: 27 Jun 2015 Electronic form version 1.4