Abstract Submitted
for the DNP15 Meeting of
The American Physical Society

D^0 Production in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR
GUANNAN XIE, Lawrence Berkeley Natl Lab/ USTC, STAR COLLABORATION
— The mass of charm quarks is larger than the scales of the medium created in
heavy-ion collisions at RHIC energies ($m_c >> \Lambda_{QCD}, T, m_{u,d,s}$). This makes their
production mainly feasible in the primordial nucleon-nucleon collisions, therefore,
their final kinematics provide unique information on their interaction with the hot
and dense medium produced in the early stages of heavy-ion collisions. Recent mea-
surements of D0 nuclear modification factors shed light on the intricate interplay
of Cold Nuclear Matter effects, hadronization mechanisms and energy loss of charm
quarks in heavy-ion collisions. In this presentation, we will report D0 topological re-
construction via its golden hadronic decay channel ($D^0 \rightarrow K\pi$) using STAR’s recently
installed Heavy Flavor Tracker (HFT) for reconstruction of secondary vertices. We
will discuss studies of: HFT tracking efficiency from both data and simulation,
D0 background reconstruction techniques, and the optimizations of D0 cuts using
TMVA toolkit. The transverse-momentum and centrality dependence of D0 produc-
tion in Au+Au Collisions at 200 GeV will be presented. We will also discuss nuclear
modification factors and their comparison with published data from RHIC and the
LHC and finally compare the results with models.

Guannan Xie
Lawrence Berkeley Natl Lab/ USTC

Date submitted: 27 Jun 2015

Electronic form version 1.4