Abstract Submitted for the DNP15 Meeting of The American Physical Society

New limits for the $2\nu\beta\beta$ decay of 96 Zr to excited nuclear states of 96 Mo¹ SEAN FINCH, WERNER TORNOW, Duke University and TUNL — The final results from our search for the $2\nu\beta\beta$ decay of 96 Zr to excited 0⁺ and 2⁺ states of 96 Mo are presented. Such measurements provide valuable test cases for $2\nu\beta\beta$ -decay nuclear matrix element calculations, which in turn are used to tune $0\nu\beta\beta$ -decay nuclear matrix element calculations. After undergoing double- β decay to an excited state, the excited daughter nucleus decays to the ground state, emitting two coincident γ rays. These two γ rays are detected in coincidence by two HPGe detectors sandwiching the 96 Zr sample, with a NaI veto in anti-coincidence. This experimental apparatus, located at the Kimballton Underground Research Facility (KURF), has previously measured the $2\nu\beta\beta$ decay of 100 Mo and 150 Nd to excited nuclear states. Experimental limits on the $T_{1/2}$ and corresponding nuclear matrix element are presented for each of these decays. As a byproduct of this experiment, limits were also set on the single- β decay of 96 Zr.

¹Supported by DOE grant: DE-FG02-97ER41033

Sean Finch Duke Univ

Date submitted: 29 Jun 2015

Electronic form version 1.4