New Measurement of the $^5$H Ground State

DANIEL G. MCNEEL, A.H. WUOSMAA, Univ of Connecticut, S. BEDOOR, A.S. NEWTON, Western Michigan Univ, K.W. BROWN, R.J. CHARITY, L.G. SOBOTKA, Washington Univ - St. Louis, W.W. BUHRO, Z. CHAJECKI, W.G. LYNCH, J. MANFREDI, R.H. SHOWALTER, M.B. TSANG, J.R. WINKLEBAUER, MSU/NSCL, S.T. MARLEY, Univ of Notre Dame, D.V. SHETTY, Grand Valley State Univ — We have studied the ground state of $^5$H using the $^6$He($d$,$^3$He)$^5$H reaction in inverse kinematics. Existing data for $^5$H are in conflict with each other and with many theoretical predictions. This measurement provides a clear evidence for the $^5$H ground state, and the previously unreported $^6$He($d$,$^t$)$^5$He reaction is also observed. A $^6$He beam at 55 MeV/A produced at the National Superconducting Cyclotron Laboratory at Michigan State University bombarded a 1.9 mg/cm$^2$ ($CD_2$)$_n$ target. The reaction products were detected with HiRA (the High Resolution Array). The $^3$He and $^3$H particles from the $^6$He($d$,$^3$He/$^3$H)$^5$H/$^5$He reactions were detected in coincidence with the decay products of the unstable $^5$H and $^5$He nuclei, providing signatures for the transitions of interest. The properties of the $^5$He ground state provide information about the calibration and response of the apparatus. Details of the measurement, and a comparison of the data with earlier results and theoretical calculations, will be presented.

$^1$Work supported by the U.S. Department of Energy under Contracts DE-FG02-04ER41320 and DE-FG02-87ER40316, and the U. S. National Science Foundation under Grant Numbers PHY-1068217 and PHY-1068192.

Daniel McNeel
Univ of Connecticut - Storrs

Date submitted: 30 Jun 2015

Electronic form version 1.4