Gain Calibration of the Barrel Calorimeter in the GlueX Experiment1 WILLIAM MCGINLEY, Carnegie Mellon University, GLUEX COLLABORATION — The GlueX experiment was built to produce and observe the spectrum of exotic hybrid meson states using a 9 GeV linearly polarized photon beam incident on a proton target. In order to achieve this goal GlueX uses electromagnetic calorimeters to detect neutral particles. There are two calorimeters, a barrel electromagnetic calorimeter and a forward electromagnetic calorimeter that offer a polar angular coverage from 11° to 126° and 2° to 11°, respectively. Gain calibration of the calorimeters is important to improve the reconstructed energy resolution of neutral particles and allows for better detection of physics signals. To do the calibration we reconstruct a sample of π^0 events by detecting their decay photons in the calorimeters and minimize the width of the π^0 sample by adjusting the gains on each of the readout channels. The energy resolution for both calorimeters improved significantly as a result, and the gain calibration allowed preliminary studies of several physics channels from beam-commissioning data. The calorimeters calibration techniques and early physics results are presented and discussed.

1This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.