Progress on Electrode Designs and Tests to Generate High Electric Field in Superfluid Liquid Helium-4 for the SNS nEDM Experiment

WANCHUN WEI, Los Alamos National Laboratory, DOUGLAS BECK, University Of Illinois, VINCE CIANCILOLO, Oak Ridge National Laboratory, STEVEN CLAYTON, Los Alamos National Laboratory, CHRISTOPER CRAWFORD, University Of Kentucky, SCOTT CURRIE, WILLIAM GRIFFITH, TAKEYASU ITO, JOHN RAMSEY, AMY ROBERTS, Los Alamos National Laboratory, RICHARDO SCHMID, California Institute Of Technology, GEORGE SEIDEL, Brown University, DANIEL WAGNER, University Of Kentucky, STEVEN WILLIAMSON, University Of Illinois, WEIJUN YAO, Oak Ridge National Laboratory, SNS NEDM COLLABORATION — The SNS nEDM experiment is aiming to search for the neutron electric dipole moment (EDM) with ultracold neutrons (UCNs) stored in superfluid liquid helium-4 at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory, with a goal sensitivity of $3 \times 10^{-28}$ e-cm, an improvement of two orders of magnitude over the current limit. To achieve the goal sensitivity of the EDM searches, it relies on the stable application of a 75 kV/cm electric field across the UCN storage space without breakdowns in superfluid liquid helium-4. The electrode designs and tests on various geometries and coating materials are undergoing. The high voltage tests in superfluid helium-4 are performed in a specially-designed apparatus at temperatures as low as 0.4 K and pressures between saturated vapor pressure (SVP) of liquid helium and 1 atm. These tests would help in a better understanding of the electric breakdown phenomenon in liquid helium-4. In this talk, we will present the latest progress on electrode designs and tests, and their implications of findings that affect the design of the SNS nEDM experiment.

Wanchun Wei
Los Alamos National Laboratory

Date submitted: 30 Jun 2015