Abstract Submitted
for the DNP15 Meeting of
The American Physical Society

Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting

LEONARD GAMBERG, Pennsylvania State Univ

— We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.

1Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460

Leonard Gamberg
Pennsylvania State Univ

Date submitted: 30 Jun 2015

Electronic form version 1.4