Abstract Submitted for the DNP15 Meeting of The American Physical Society

Excited State Properties in Neutron-rich Nuclei near $N = 40^{1}$ B.P. CRIDER, C.J. PROKOP, S.N. LIDDICK, NSCL/MSU, C.J. CHIARA, Army Research Lab, ORAU, A.D. AYANGEAKAA, ANL, J.J. CARROLL, Army Research Lab, J. CHEN, NSCL/MSU, H.M. DAVID, ANL, S. GO, R. GRZYWACZ, UTK, J. HARKER, UMD, R.V.F. JANSSENS, T. LAURITSEN, D. SEWERYNIAK, ANL, W.B. WALTERS, UMD — The neutron-rich nuclei near N = 40 have recently been the focus of many experimental and theoretical efforts. In this region, the competing energy cost for promoting pairs of nucleons across either Z = 28 or N = 40 and the energy gain from residual nucleon-nucleon interactions gives rise to several lowenergy 0^+ states and is a hallmark of shape coexistence. Low-energy 0^+ states have been observed in ⁶⁸Ni, and predicted for other nuclei in the region. Recent theoretical calculations are able to reproduce the energies of known states in 68 Ni and stress the importance of the tensor component of the monopole interaction. Yet, while energies of the levels are a useful comparison, a more stringent test is the reproduction of level lifetimes, where the predicted half-lives can vary by several orders of magnitude depending on the interaction. To further benchmark theoretical calculations in this region, a setup designed to measure level lifetimes has been constructed. A description of the array and preliminary results will be presented.

¹This work was supported by the DOE NNSA award No. DE-NA0000979, NSF contract No. PHY1102511, DOE SC NP contract No. DE-AC-06CH11357 and grant No. DE-FG02-94ER40834

Benjamin Crider Michigan State Univ

Date submitted: 30 Jun 2015

Electronic form version 1.4