Abstract Submitted for the DNP15 Meeting of The American Physical Society

Two-neutron Sequential Decay of $^{24}\mathrm{O}$ MICHAEL JONES, NSCL/MSU, PAUL DEYOUNG, Hope College, THOMAS BAUMANN, NSCL, JOE FINCK, Central Michigan University, ZACH KOHLEY, ANTHONY KUCHERA, NSCL/MSU, JENNA SMITH, TRIUMF, ARTEMIS SPYROU, KRYSTIN STIEFEL, NSCL/MSU, NATHAN FRANK, Augustana College, MICHAEL THOENNESSEN, NSCL/MSU, MONA COLLABORATION — A recent experiment performed at the NSCL populated a two-neutron unbound excited state in $^{24}\mathrm{O}$ through a (d,d') reaction at 82 MeV/nucleon. Using invariant mass spectroscopy, a three-body state was observed in the $^{22}\mathrm{O} + 2n$ system at E = 750^{+100}_{-100} keV and $\Gamma = 100^{+300}_{-100}$ keV, placing it at $\sim \!\! 7.68$ MeV with respect to the ground state of $^{24}\mathrm{O}$. Three-body correlations for the decay of $^{24}\mathrm{O} \rightarrow ^{22}\mathrm{O} + 2n$ were examined and found to show strong evidence for a sequential decay through an intermediate state in $^{23}\mathrm{O}$. A di-neutron or phase-space model for the three-body breakup is unable to describe these correlations.

Michael Jones NSCL/MSU

Date submitted: 01 Jul 2015 Electronic form version 1.4