Abstract Submitted for the DNP15 Meeting of The American Physical Society

Constraint of the Astrophysical ${}^{26g}Al(\mathbf{p},\gamma){}^{27}Si$ Destruction Rate at Stellar Temperatures¹ S.D. PAIN, Oak Ridge National Laboratory, ORRUBA COLLABORATION — The 1809-keV γ ray from the beta decay of ²⁶Al provides an unsurpassed opportunity for studying the ongoing nucleosynthesis within our Galaxy. A detailed understanding of the production and destruction rates for ²⁶Al are required to quantitatively understand the ²⁶Al signature; the ²⁶Al(p,γ)²⁷Si reaction is a major destruction pathway at progenitor stellar temperatures. This reaction rate is determined by the properties of states near the proton threshold in ²⁷Si, some of which are too low in energy for direct measurements of the ${}^{26}Al(p,\gamma){}^{27}Si$ rate with current beam intensities. We have measured mirror states in ²⁷Al to inform the ²⁷Si structure, via the ²⁶Al(d,p)²⁷Al reaction in inverse kinematics using the ORRUBA and SIDAR arrays of silicon detectors. Spectroscopic information on the states populated in ²⁷Al have been extracted and spectroscopic factors for the ²⁷Si states have been determined by comparisons with shell-model-embedded-in-the-continuum calculations. Experimental results and the constrained reaction rate for massive-star nucleosynthesis will be presented.

[1]. S.D. Pain et al., PRL 114, 212501 (2015).

 $^1\mathrm{Work}$ supported in part by U.S. Department of Energy and National Science Foundation

Steven Pain Oak Ridge National Laboratory

Date submitted: 01 Jul 2015

Electronic form version 1.4