Abstract Submitted for the DNP15 Meeting of The American Physical Society

Single-neutron states and the role of the $\nu g_{9/2}$ orbital in ⁷¹Zn¹ SIMONE BOTTONI, Physics Division, Argonne National Laboratory, ANL COL-LABORATION, LBLN COLLABORATION, LLNL COLLABORATION, U. OF ROCHESTER COLLABORATION, U. OF MARYLAND COLLABORATION — The high-spin structure of ⁷¹Zn has been investigated at ATLAS by means of the deep inelastic reaction ⁴⁸Ca+⁷⁰Zn at 25% above the Coulomb barrier, using GRETINA and CHICO-2. In conjunction with GAMMASPHERE data from a similar reaction with a ⁷⁰Zn beam on a thick ¹⁹⁷Au target, a level scheme associated with the 3.96 h, 9/2⁺ isomer in ⁷¹Zn was delineated with the aim to achieve a better understanding of the nature of the neutron excitations close to N = 40. The level sequences built on the $g_{9/2}$ neutron orbital all appear to be of single-particle character. The results will be presented and compared with shell-model calculations using modern effective interactions.

¹This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract no. DE-AC02-06CH11357 (ANL), DE-AC02-05CH11231 (LBNL, GRETINA), DE-AC52-07NA27344 (LLNL), and NSF.

Simone Bottoni Physics Division, Argonne National Laboratory

Date submitted: 01 Jul 2015

Electronic form version 1.4