Abstract Submitted for the DNP15 Meeting of The American Physical Society

Reducing Ambiguities in Spectroscopic Factors with Combined Measurements and the ⁸⁶Kr(d,p) Reaction at 35MeV/u D. WALTER, J.A. CIZEWSKI, T. BAUGHER, A. RATKIEWICZ, B. MANNING, S.J. LONSDALE, S. BURCHER, Rutgers University, S.D. PAIN, K.A. CHIPPS, ORNL, F.M. NUNES, S. AHN, T. BAUMANN, D. BAZIN, J. PEREIRA, S. WILLIAMS, MSU, P. THOMP-SON, G. CERIZZA, C. THORNSBERRY, K.L. JONES, UT-Knoxville, D.W. BAR-DAYAN, P.D. O'MALLEY, Notre Dame, R.L. KOZUB, Tenn. Tech., S. OTA, JAEA — Spectroscopic information for low-lying states above shell closures depends on the shape of the bound-state potential, which greatly affects the extracted spectroscopic factors. To mitigate this uncertainty, Mukhamedzhanov and Nunes [1] have proposed a combined method; the external portion is fixed with a peripheral reaction, and is combined with a higher energy measurement with a larger contribution from the interior. This will constrain the single-particle ANC, and should enable spectroscopic factors to be deduced with uncertainties dominated by cross-section measurements rather than the bound-state potential. Published measurements of 86 Kr(d,p) at 5.5MeV/u [2] were used for the external contribution of this reaction. An ANC analysis shows that the reaction is peripheral at this energy and the ANC has been extracted. At less-peripheral energies, 86 Kr(d,p) at 35MeV/u has been measured in inverse kinematics at the NSCL using the ORRUBA and SIDAR arrays of silicon strip detectors. Results of the ANC analysis and preliminary results from 86 Kr(d,p) at 35MeV/u will be presented. This work is supported in part by the NSF and the U.S. DOE. [1] Phys.Rev.C 72, 017602 (2005) [2] Phys.Rev.C 1,938 (1970)

> D. Walter Rutgers University

Date submitted: 01 Jul 2015

Electronic form version 1.4