First direct determination of the superallowed β-decay Q_{EC}-value for 14O

KERIM GULYUZ, MARTIN EIBACH, RYAN RINGLE, STEFAN SCHWARZ, CHANDANA S. SUMITHRARACHCHI, National Superconducting Cyclotron Laboratory, GEORG BOLLEN, Facility for Rare Isotope Beams / Michigan State University, KORTNEY COOPER, CHRISTOPHER IZZO, DAVID J. MORRISSEY, RACHEL SANDLER, ADRIAN A. VALVERDE, National Superconducting Cyclotron Laboratory / Michigan State University, RICHARD R. BRYCE, Central Michigan University, MATTHEW REDSHAW, National Superconducting Cyclotron Laboratory / Central Michigan University, MAXIME BRODEUR, Notre Dame University, ANTONIO C.C. VILLARI, Facility for Rare Isotope Beams — Superallowed $0^+ \rightarrow 0^+$ nuclear β transitions provide a sensitive test of the conserved vector current (CVC) hypothesis. While the CVC hypothesis calls for a constant corrected F_t-value for all superallowed $0^+ \rightarrow 0^+$-decays, if there is a scalar interaction, an additional term approximately inversely proportional to Q_{EC} would be present in F_t. Hence the sensitivity to the presence of a scalar current would be larger for smaller Q_{EC}; i.e. for low-Z nuclei. Of the 14 F_t-values that are used to calculate the world average, only the Q_{EC} for 14O has not been measured in a Penning trap, despite multiple attempts at other facilities. We have performed the first direct measurement of the ground state β-decay Q_{EC}-value at the LEBIT facility. An order of magnitude improvement in precision makes it the most precisely known Q_{EC}-value for determining F_t used in testing the CVC hypothesis.

Kerim Gulyuz
National Superconducting Cyclotron Laboratory

Date submitted: 01 Jul 2015