Abstract Submitted for the DNP15 Meeting of The American Physical Society

High-precision half-life measurements for the superallowed β^+ emitter ¹⁰C MICHELLE DUNLOP, Univ of Guelph — High precision measurements of the ft values for superallowed Fermi beta transitions between 0^+ isobaric analogue states allow for stringent tests of the electroweak interaction described by the Standard Model. These transitions provide an experimental probe of the unitary of the Cabibbo-Kobayashi-Maskawa matrix, the Conserved-Vector-Current hypothesis, as well as set limits on the existence of scalar currents in the weak interaction. Half-life measurements for the lightest of the superallowed emitters are of particular interest as the low-Z superallowed decays are most sensitive to a possible scalar current contribution. The half-life of 10 C can be measured by directly counting the β particles or by measuring the γ -ray activity following β decay. Previous results for the ¹⁰C half-life measured via these two methods differ at the 1.3σ level, motivating further measurements of the ¹⁰C half-life using both techniques. Recent ¹⁰C halflife measurements via both gamma-ray photo-peak and direct beta counting were performed at TRIUMF's Isotope Separator and Accelerator facility. This presentation will highlight the importance of these measurements and half-life results will be presented.

> Michelle Dunlop Univ of Guelph

Date submitted: 01 Jul 2015

Electronic form version 1.4