A search for double beta decays of 136Xe to the excited state of 136Ba with EXO-200

SERERES JOHNSTON, UMass, EXO-200 COLLABORATION — EXO-200 is one of the most sensitive searches for neutrinoless double beta decay of 136Xe in the world. The experiment uses 110 kg of active enriched liquid xenon in an ultralow background time projection chamber installed at the Waste Isolation Pilot Plant, a salt mine with a 1600 m water equivalent overburden. This detector has demonstrated excellent energy resolution and background rejection capabilities. While the experiment is designed to search for the double beta decays of 136Xe to the ground state of 136Ba, transitions to the excited states of 136Ba are also plausible. The $\beta\beta2\nu$ decay to the first 0^+ excited state of the daughter nuclei has been observed for 100Mo and 150Nd; this particular transition for 136Xe has a theoretical lifetime on the order of 10^{25} year, which is right around the sensitivity of EXO-200. We present the results from the search of double beta decays to the excited state using two years of EXO-200 data.

Yung-Ruey Yen
Drexel University

Date submitted: 02 Jul 2015