Measurement of the 242Pu neutron capture cross section1 M.Q. BUCKNER, C.Y. WU, R.A. HENDERSON, B. BUCHER, Lawrence Livermore National Laboratory, T.A. BREDEWEG, B. BARAMSAI, A. COUTURE, M. JANDEL, S. MOSBY, J.M. O’DONNELL, J.L. ULLMANN, Los Alamos National Laboratory, A. CHYZH, North Carolina State University, DANCE COLLABORATION — Precision (n,f) and (n,γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE’s Stockpile Stewardship Program. 242Pu(n,γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n,γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n,γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n,γ) cross section spans four orders of magnitude for incident neutron energies from thermal to \approx 30 keV. The absolute scale of the 242Pu(n,γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n,γ) neutron capture cross section is \approx 30\% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported.

1Funded by U.S. DOE contract no. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

Matthew Buckner
Lawrence Livermore National Laboratory

Date submitted: 06 Jul 2015

Electronic form version 1.4