Abstract Submitted for the DNP15 Meeting of The American Physical Society

Deformed Structures and Shape Coexistence in Zr-98¹ BRUNO OLAIZOLA, Univ of Guelph, 8PI COLLABORATION — The nuclear structure of the zirconium isotopes evolves from a mid-open neutron shell deformed region (80Zr), through a closed shell (90Zr), to a closed subshell (96Zr), and then to a sudden reappearance of deformation (100 Zr). This rapid onset of deformation across the Zr isotopes is unprecedented, and the issue of how collectivity appears and disappears in these isotopes is of special interest. Until recently, only ⁹⁸Zr (and maybe ¹⁰⁰Zr) had indirect and weak evidence for shape coexistence, with only speculative interpretation of the experiments. Recent results from high precision B(E2) measurements provided direct evidence of shape coexistence in ⁹⁴Zr and suggested that it may happen in many other nuclei in this region. In order to provide direct evidence of shape coexistence in $^{98}{\rm Zr}$ a high-statistical-quality $\gamma\gamma$ experiment was carried out with the 8π spectrometer at ISAC-TRIUMF. The array consists of 20 Comptonsuppressed hyper-pure germanium detectors plus β particle and conversion electron detectors. Excited states up to ~ 5 MeV in $^{98}{\rm Zr}$ were populated in the β^- decay of $^{98}\text{Y J}^{\pi} = (0^{-})$ and $^{98m}\text{Y J} = (4,5)$. Preliminary results on key branching ratios will be presented.

¹This work was supported by the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.

Bruno Olaizola Univ of Guelph

Date submitted: 07 Jul 2015 Electronic form version 1.4