Prompt and Delayed Spectroscopy of Ac isotopes around $N=126$

S.S. HOTA, G.J. LANE, M.W. REED, A.J. MITCHELL, A.E. STUCHBERY, T. KIBEDI, A.A. AKBER, T.E. ERIKSEN, M.S. GERATHY, N. PALALANI, T.R. PALAZZO, Australian National University — Nuclei above $Z=82$ and around $N=126$ are well described by the spherical shell model, with the attractive proton-neutron residual interactions and particle-octupole vibration coupling resulting in energy-favored, isomeric states occurring along the yrast line. Nuclei up to $Z=88$ are mostly well known [1], but information on Ac ($Z=89$) isotopes is limited. We report on high-spin, gamma-ray spectroscopy measurements of 214,215,216,217Ac performed at the Australian National University using the CAESAR array and fusion-evaporation reactions between 12C and 14,15N beams delivered by the 14UD accelerator incident on 204Pb and 209Bi targets. States up to $29/2^+$ isomers were known previously in 215,217Ac [2,3], while only one gamma-ray has been assigned to each of 214,216Ac. New level schemes have now been constructed for 214,216Ac and those for 215,217Ac have been significantly extended. The results will be presented in detail together with semi-empirical shell model calculations that support the proposed level schemes.