Abstract Submitted for the DNP15 Meeting of The American Physical Society

Low energy neutron deuteron scattering to N^3LO^1 ARMAN MAR-GARYAN, JARED VANASSE, ROXANNE SPRINGER, Duke University — We calculate the next-to-next-to-leading order (N³LO) *nd* scattering amplitude in the framework of nonrelativistic pionless effective field theory (EFT_{\$\nu\$}). This theory is only valid when the typical momentum exchange in the scattering is smaller then the mass of the pion. The power counting parameter for EFT_{\$\nu\$} is the ratio $\frac{Q}{\Lambda_{\nu}}$, where Q is the typical momentum exchange in the scattering and Λ_{ν} is the EFT_{\$\nu\$} breakdown scale, Λ_{ν} < m_{\pi}$. The calculation of the amplitude for *nd* scattering at leading order requires summing an infinite set of diagrams. The first nonzero polarization-dependent observables occur at N²LO. At N³LO new 2-body forces appear, which introduce four new EFT_\$\nu\$ coefficients. These coefficients are fixed by the ${}^{3}P_{J}$ and ${}^{1}P_{1}$ phase shifts of NN scattering. We find that these terms have an important impact. The results of this calculation at N³LO will be important for understanding spin polarization observables in *nd* scattering, in particular the longstanding A_{y} puzzle.

¹This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-05ER41368.

Arman Margaryan Duke University

Date submitted: 09 Jul 2015

Electronic form version 1.4