Abstract Submitted for the DNP15 Meeting of The American Physical Society

Feasibility Colliding-beam fission reactor via $^{238}\mathrm{U}^{80+}+^{238}\mathrm{U}^{80+}$ $\rightarrow 4$ FF+ 5n + 430 MeV beam with suppressed plutonium and direct conversion of fission fragment (FF) energy into electricity and/or Rocket propellant with high specific impulse BOGDAN MAGLICH, TIM HESTER, California Science & Engineering Corporation (CALSEC), CALSEC COLLABORATION — Uranium-uranium colliding beam experiment¹, used fully ionized $^{238}U^{92+}$ at energy $100 \text{GeV} \rightarrow \leftarrow 100 \text{ GeV}$, has measured total $\sigma = 487$ b. Reaction rate of colliding beams is proportional to neutron flux-squared. First functional Auto-Collider³⁻⁶, a compact Migma IV, 1 m in diameter, had self-colliding deuterons, D^+ , of 725 KeV $\rightarrow \leftarrow$ 725 KeV, resulting in copious production of T and ³He. U+U Autocollider "EXYDER" will use strong-focusing magnet⁷, which would increase reaction rate by 10⁴. 80 times ionized U ions accelerated through 3 MV accelerator, will collide beam 240 MeV→←240 MeV. Reaction is: $^{238}\mathrm{U^{80+}} + ^{238}\mathrm{U^{80+}} \rightarrow 4~\mathrm{FF} + 5\mathrm{n} + 430~\mathrm{MeV}$. Using a simple model fission σ_f ~ 100 b. Suppression of Pu by a factor of 10^6 will be achieved because NO thermal neutron fission can take place; only fast, 1 -3 MeV, where σ_{abs} is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators^{4,11}. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project <u>electric</u> power density production of 20 to 200 MW_e m⁻³, equivalent to Thermal 1.3 – 13 $GW_{th}m^{-3}$. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp= 10^6 sec., 10^3 times higher than current rocket engines.

> Bogdan Maglich California Science & Engineering Corporation (CALSEC)

Date submitted: 09 Jul 2015 Electronic form version 1.4