Study of 162Er via the (p, t) and (p, p') reactions D. KISLIUK, P.E. GARRETT, A. FINLAY, L. BIANCO, V. BILDSTEIN, C. BURBADGE, S. CHAGNON-LESSARD, A. DIAZ VARELA, M.R. DUNLOP, R. DUNLOP, P. FINLAY, D. JAMIESON, B. JIGMEDDORJ, A.D. MACLEAN, J. MICHETTI-WILSON, K.G. LEACH, A.J. RADICH, E. RAND, C.E. SVENSSON, J. WONG, University of Guelph, G.C. BALL, S. TRIAMBAK, Triunf, T. FAESTERMANN, Technische Universität München, R. HERTENBERGER, H.-F. WIRTH, Ludwig-Maximilian-Universität München — The nature of excited states in well-deformed nuclei pose a challenge in nuclear structure. In light of this, the study of 162Er via the 164Er(p, t) and 162Er(p, p') reactions has been initiated to shed light on the structure of these excited states. The experiments were performed at the Maier-Leibnitz Laboratory using a 22 MeV proton beam on highly-enriched targets of $^{162, 164}$Er and the reaction was analyzed with the Q3D spectrograph. Strong population in the (p, t) reaction of the 0^+_2 state, far greater than other 0^+ states, has been observed. Transition matrix elements for population of low-lying states in the (p, p') reaction have also been extracted. Initial results from these experiments will be presented.

Paul Garrett
University of Guelph