Real-time Optimization of an Ion Optical Beamline1 ZACHARY SCHILLACI, MATTHEW AMTHOR, Bucknell University, DAVE MORRISSEY, National Superconducting Cyclotron Laboratory, MAURICIO PORTILLO, Facility for Rare Isotope Beams, STEFAN SCHWARZ, MATHIAS STEINER, CHANDANA SUMITHRARACHCHI, National Superconducting Cyclotron Laboratory —

We have developed an experimental approach to automatically adjust multiple electrostatic and/or magnetic elements on an ion optical beamline, while analyzing the profile of the beam on a detector at the image point, until an optimal tune is found. This approach dramatically simplifies beamline tuning, thus allowing more efficient use of experimental equipment; ensures a more optimal tune is found, providing a more focused beam spot without a significant loss of beam transmission; and will allow the development of specialized optical tunes based on the needs of any given experiment. The approach was tested directly on the D-Line at the National Superconducting Cyclotron Laboratory at Michigan State University in several real-time optimization runs. The initial experiments demonstrate the ability of the optimizer to focus the beam while preserving transmission, ultimately halving σ_x and σ_y of the beam spot within a one-hour optimization run relative to that produced through a manual tweak of a model based tune. With further research we plan to generalize the approach to work on any given beamline, including particularly for higher order tunes of fragment separators.

1NSF REU Grant #PHY-1156964 and NSF Grant #PHY-1102511

Zachary Schillaci
Bucknell University

Date submitted: 01 Aug 2015

Electronic form version 1.4