One-proton knockout reaction of 20N

K. WHITMORE, H. IWASAKI, B.A. BROWN, A. GADE, C. LOELIUS, C. MORSE, S.R. STROBERG, NSCL/MSU, D. BAZIN, N. KOBAYASHI, F. RECCHIA, D. SMALLEY, D. WEISSSHAAR, K. WIMMER, NSCL, A. LEMASSON, GANIL, C.M. CAMPBELL, P. FALLON, A.O. MACCHIAVELLI, LBNL, T. OTSUKA, University of Tokyo, T. SUZUKI, Nihon University, J.A. TOSTEVIN, University of Surrey — Nuclear structure away from stability can change drastically due to the re-ordering of shell-model orbitals. In particular, near the neutron drip line, the neutron $1s_{1/2}$ orbital and $0d_{5/2}$ orbitals may become degenerate or even inverted. In order to study the trend of these orbitals across the $N = 13$ isotones, a one-proton knockout reaction from 20N has been performed. The cross section is sensitive to states in 19C as well as the ground state in 20N. The experiment was performed at the NSCL with a beam of 20N at 70 MeV/nucleon. Gamma rays in coincidence with the 19C fragments were measured with GRETINA to determine exclusive cross sections, and the momentum of 19C recoils were recorded by the S800. Results will be compared to reaction calculations in the eikonal model.