Searches for chirality-flipping interactions via cyclotron-radiation spectroscopy1 A. GARCIA, M. FERTL, University of Washington, M. GUIGUE, Pacific Northwest National Laboratory, P. KAMMEL, University of Washington, A. LEREDDE, P. MUELLER, Argonne National Laboratory, R.G.H. ROBERTSON, G. RYBKA, University of Washington, G. SAVARD, Argonne National Laboratory, H.E. SWANSON, University of Washington, B.A. VANDEVENDER, Pacific Northwest National Laboratory, A. YOUNG, North Carolina State University — The measurement of the beta spectrum from 6He allows for sensitive searches of tensor (chirality flipping) interactions. A source that delivers about 10^{10} 6He atoms per second in a stable fashion exists at the University of Washington. The recent demonstration by the Project 8 collaboration that detection of cyclotron radiation yields excellent energy resolution for electrons of 32 keV emitted from a gaseous source invites application of the technique to higher-energy betas. Calculations and considerations showing the applicability of the technique for the 6He case will be presented.

1We acknowledge support from DOE under grants DE-FG02-97ER41020 and DE-FG02-97ER41042 and NSF under grant 1307426