Tests of Multi-Nucleon Transfer Models Using Gamma-Ray Spectroscopy1 KYLE MCCALEB, RICARDO YANEZ, WALTER LOVELAND, Oregon State University, OSU-ANL-BNL-ANU-UMD COLLABORATION — It has been suggested that multi-nucleon transfer (MNT) reactions can be effective tools in synthesizing N=126 and n-rich heavy nuclei. We are engaged in a program to measure the yields of projectile-like fragments (PLFs) and target-like fragments (TLFs) in the interaction of 450 MeV 136Xe with 208Pb, 860 MeV 136Xe with 198Pt, and 1360 and 1700 MeV 204Hg with 208Pb. The use of in-beam, out of beam and post irradiation γ-ray spectroscopy using Gammasphere and single Ge detectors. We compare our results to the predictions of Zagrebaev and Greiner and semi-classical models such as GRAZING-F. We find the predictions of the GRAZING-F model represent, at best, the yields of the $\Delta Z=\pm 0,1,2$ products while the Z-G predictions do a much better job of representing the yields of the large transfers.

1This work was supported, in part, by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Grant DE-SC0014380 and the National Science Foundation.