Chiral magnetic effect and anomalous transport from real-time lattice simulations1 SOEREN SCHLICHTING, SAYANTAN SHARMA, Brookhaven Natl Lab, MARK MACE, Stonybrook University, NIKLAS MUELLER, Univ. Heidelberg — We present a first-principle study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian $SU(N_c)$ and Abelian $U(1)$ gauge fields. We investigate the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, and demonstrate how the interplay of the Chiral magnetic (CME) and Chiral separation effect (CSE) lead to the formation of a propagating wave. We also analyze the quark mass dependence of these phenomena and extract spectral information about the carriers of axial and vector charge.

1Support from the U.S. D.O.E. under Grant No. DE-SC0012704 and DE-FG02-97ER41014 is gratefully acknowledged.