Abstract Submitted for the DNP16 Meeting of The American Physical Society

Measurements of Gamma Rays from 7Be Inelastic Scattering¹ S.L. HENDERSON, T. AHN, J. ALLEN, D.W. BARDAYAN, M.A. CAPRIO, CH. CON-STANTINOU, P. FASANO, B. FRENTZ, M. HALL, L. JENSEN, J.J. KOLATA, X. LI, A.E. MCCOY, S. MOYLAN, P. O'MALLEY, C.S. RE, University of Notre Dame, J. RIGGINS, University of Michigan, A. SIMON, University of Notre Dame, R. TORRES-ISEA, University of Michigan, S. STRAUSS, University of Notre Dame — Ab-initio methods have been successful in describing the structure of light nuclei using realistic nucleon-nucleon interactions, but more experimental data is needed in the light unstable nuclei region. No-core configuration interaction calculations have made predictions for the M1 and a lower limit for the E2 electromagnetic transition strengths of the decay of the first excited state of 7Be where the latter has never before been measured. To measure the E2 transition strength, a Coulomb Excitation experiment was performed using TwinSol at the University of Notre Dame. A beam of ^{7}Be ions were scattered off a gold target, and gamma rays from inelastically scattered ions were detected using clover Ge detectors. Preliminary results for the E2 transition strength and its comparison to the no-core configuration interaction approach will be shown. Extensions of this experimental method to other light unstable nuclei will be discussed.

¹This work has been supported by US NSF grant no. PHY 14-19765 and DOE grant number DE-FG02-95ER-40934.

Samuel Henderson University of Notre Dame

Date submitted: 30 Jun 2016

Electronic form version 1.4