Abstract Submitted for the DNP16 Meeting of The American Physical Society

Decay spectroscopy of ^{257,258}Db in the vicinity of the N=152 deformed shell gap¹ MARIJA VOSTINAR, The University of Tennessee, GANIL-E656 COLLABORATION, GSI-R292 COLLABORATION — Valuable information on the existence and the position of the island of superheavy stability can be obtained by studying the structure of elements in the transfermium region (Z_i100). Of particular interest are the isotopes around the deformed shell gaps of N=152 and N=162, where some of the single particle states relevant for the opening of these gaps are also relevant for the spherical shell closure in the superheavy region at N= 172 or N=184. In our study we have investigated ²⁵⁷Db (N=152) and ²⁵⁸Db. We confirmed that 257 Db has at least two states with different half-lives decaying by α particle emission into different states of 253 Lr, which further decays by α emission with different half-lives. Indication of two states with different half-lives for α decay in 258 Db was confirmed. Additional information on the γ -ray decay of excited levels in ²⁵⁰Md was gathered and a tentative level scheme was proposed. The electron capture branch of 258 Db was measured directly, and the α decay of 258 Rf was confirmed. Yet, the branching ratio is significantly lower compared to the previously published value.

¹This work is supported in part by the U.S. project: R011065209

Marija Vostinar The University of Tennessee

Date submitted: 01 Jul 2016 Electronic form version 1.4