First Results From GRIFFIN: Half-Lives of Neutron Rich
$^{128-130}$Cd RYAN DUNLOP, University of Guelph, GRIFFIN COLLABORATION
— Half-lives of $N = 82$ nuclei below doubly-magic 132Sn are key input parameters for any astrophysical r-process scenario and play an important role in the formation and shape of the second r-process abundance peak. Shell-model calculations for neutron-rich nuclei near the $N = 82$ neutron shell closure that are not yet experimentally accessible have been performed by adjusting the quenching of the Gamow-Teller (GT) operator to reproduce the 130Cd half-life. The calculated half-lives of other nuclei in the region are known to be systematically too long. Recently, a shorter half-life for 130Cd was measured by the EURICA collaboration that resolves this discrepancy by scaling the GT quenching by a constant factor for all of the nuclei in the region. Distinguishing between these discrepant half-life measurements for 130Cd is thus of critical importance. We have measured the half-lives of $^{128-130}$Cd using the high-efficiency GRIFFIN γ-ray spectrometer at TRIUMF, which improves the precision of the 128,129Cd half-lives, and confirms the shorter half-life of 130Cd recently reported by the EURICA collaboration. Details of the GRIFFIN experiments will be presented and the implications of the resulting half-lives discussed.

Ryan Dunlop
University of Guelph

Date submitted: 01 Jul 2016

Electronic form version 1.4