Upgrades for an improved measurement of the EDM of $^{225}{\text{Ra}}$.\(^1\)

TENZIN RABGA, Argonne Nat’l Lab., Michigan State Univ., KEVIN BAILEY, MATTHEW R. DIETRICH, JOHN P. GREENE, ROY J. HOLT, Argonne Nat’l Lab., WOLFGANG KORSCH, Univ., of Kentucky, ZHENG-TIAN LU, Univ., of Science and Technology of China, PETER MUELLER, TOM P. O’CONNOR, Argonne Nat’l Lab., STEVEN FROMM, ROY READY, JAIDEEP T. SINGH, Michigan State Univ. — Electric Dipole Moment (EDM) searches provide a sensitive way for probing time-reversal symmetry (T) violation in the Universe that might explain the abundance of matter over anti-matter. The $^{225}{\text{Ra}}$ atom ($t_{1/2} = 15$ days, $I = 1/2$) is a particularly attractive candidate for an EDM experiment in diamagnetic atoms due to its octupole deformation, nearly degenerate parity doublet ground state, and large mass, that make it sensitive to T-violating interactions in the nuclear sector. Since our first measurement in 2015, we have improved the sensitivity of our apparatus by more than an order of magnitude to 1.4×10^{-23} e-cm (95% C.L.), due to improvements in the atom lifetime. Further experimental upgrades are being implemented including an electric field upgrade to enhance the EDM sensitivity and STIRAP for an improved spin precession detection scheme. With these upgrades in place our EDM sensitivity should increase by nearly two orders of magnitude and allow us to substantially improve constraints on certain T-violating processes within the nucleus.

\(^1\)This work is supported by the U.S. DOE, Office of Science, Office of Nuclear Physics, under contract DE-AC02-06CH11357 and the Michigan State University.

Tenzin Rabga
Michigan State Univ.

Date submitted: 06 Jul 2016

Electronic form version 1.4