Abstract Submitted for the DNP16 Meeting of The American Physical Society

Beta-delayed neutron emission studies with a C^7LYC array at CARIBU¹ GEMMA WILSON, PARTHA CHOWDHURY, CHRISTOPHER LISTER, TRISTAN BROWN, UMass Lowell, MICHAEL CARPENTER, ANL, THOMAS CHILLERY, PATRICK COPP, EMERY DOUCET, UMass Lowell, ALAN MITCHELL, ANU, GUY SAVARD, SHAOFEI ZHU, ANL — This work is a study of β -delayed neutron and γ emission from ⁹⁴Rb at CARIBU. Beta-delayed neutron emission studies are important in the astrophysical r-process, nuclear structure and for nuclear reactor safety and design. Approximately 150 γ rays are known in the daughter 94 Sr, many of which are unplaced. An estimated 26% of γ rays are thought to be missing. The probability of β -delayed neutron emission in ⁹⁴Sr is 10.2(2)%. Recently[1], substantial γ -decay from above the neutron separation energy in ⁹⁴Rb has been reported. This research is aimed at understanding this high-lying γ -strength. The experiment employed the X-Array (a high efficiency HPGe clover array), SCANS (Small CLYC Array for Neutron Scattering) and the SATURN decay station (Scintillator And Tape Using Radioactive Nuclei) for γ , fast neutron and β -particle detection, respectively. Data were collected in a triggerless digital data acquisition system, with detected β , n, and γ events correlated offline. Techniques, analysis and first results will be discussed. [1] J. L. Tain et al, Phys. Rev. Lett 115 (062502) 2015

¹Supported by the NNSA Stewardship Science Academic Alliance Pro- gram under Grant DE-NA00013008, and by US DoE, Office of Nuclear Physics, under DE-FG02-94ER40848.

Gemma Wilson Univ of Mass - Lowell

Date submitted: 01 Jul 2016

Electronic form version 1.4