Abstract Submitted for the DNP16 Meeting of The American Physical Society

A new 55Ni(p,g) rate and its implications on the rp-process¹ WEI JIA ONG, Michigan State University / National Superconducting Cyclotron Laboratory, CHRISTOPH LANGER, Goethe University Frankfurt, FER-NANDO MONTES, National Superconducting Cyclotron Laboratory, NSCL E11024 COLLABORATION² — The low-lying energy levels of proton-rich 56 Cu have been extracted using in-beam γ -ray spectroscopy with the state-of-the-art γ ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in 56 Cu are resonances in the 55 Ni (p,γ) ⁵⁶Cu reaction, which is a part of the rpprocess in type I x-ray bursts. To resolve existing ambiguities in the reaction Q-value, a more localized IMME mass fit is used resulting in $Q = 639 \pm 82$ keV. We derive the first experimentally-constrained thermonuclear reaction rate for ${}^{55}Ni(p,\gamma){}^{56}Cu$. We find that, with this new rate, the rp-process may bypass the ⁵⁶Ni waiting point via the ${}^{55}Ni(p,\gamma)$ reaction for typical x-ray burst conditions with a branching of up to $\sim 40\%$. We also identify additional nuclear physics uncertainties that need to be addressed before drawing final conclusions about the rp-process reaction flow in the ⁵⁶Ni region.

¹This work was supported by NSF grants PHY11-02511, PHY10-68217, PHY14-04442, PHY08-22648 and PHY14-30152 ²The experiment E11024 GRETINA collaboration.

> Wei Jia Ong Michigan State University / National Superconducting Cyclotron Laboratory

Date submitted: 01 Jul 2016

Electronic form version 1.4