Understanding the “Proton Radius Puzzle”: Nuclear Polarizability Correction in 2H

OSCAR J. HERNANDEZ, TRIUMF, Univ of British Columbia, NIR NEVO DINUR, TRIUMF, CHEN JI, ECT*, INFN, SONIA BACCA, TRIUMF, The Univ of Manitoba, NIR BARNEA, Racah Inst. of Physics —

The accuracy of the proton radius was improved ten-fold by new spectroscopic measurements in muonic hydrogen [1] but it differs by 7σ from hydrogen determinations. This discrepancy, has been coined the “proton radius puzzle”. The results of new high-precision experiments on muonic deuterium indicate a new deuterium radius puzzle [2]. The accuracy of the nuclear charge radius determination from these measurements is limited by the uncertainty in the nuclear structure effects. We have calculated this correction in Ref. [3] including the first estimate of the nuclear-model dependence. Due to the importance of constraining the uncertainty, we will determine the statistical and systematic uncertainties of the χEFT potentials by determining the co-variance matrices of our predictions. I will also discuss an alternate method that may reduce the theoretical uncertainty.

1TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant number SAPIN-2015-00031)