Abstract Submitted for the DNP16 Meeting of The American Physical Society

Measurement of ${}^{34}Ar(,p){}^{37}K$ using the JENSA Gas Jet Target¹ JUSTIN BROWNE, Michigan State University, KELLY CHIPPS, Oak Ridge National Laboratory, HENDRIK SCHATZ, Michigan State University, KONRAD SCHMIDT, National Superconducting Cyclotron Laboratory, JENSA COLLAB-ORATION COLLABORATION — X-ray bursts are very luminous thermonuclear explosions that occur in binary star systems. In these systems, a neutron star accreting matter from a companion star undergoes increased thermonuclear burning, which causes a breakout from the hot CNO cycle into the p-process. The rates of (,p) reactions can significantly impact the lightcurve and elemental abundances resulting from the X-ray burst. Using a radioactive ion beam at the National Superconducting Cyclotron Laboratory (NSCL), the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target is used to directly measure (,p) reactions. The 34 Ar(,p)³⁷K reaction rate was measured by detecting reaction products in the Super-ORRUBA silicon detector array and a position-sensitive ionization chamber, while -rays were detected in the HAGRiD LaBr₃ detector array. Preliminary results from this experiment will be presented.

¹This research is supported by the U. S. Department of Energy and the National Science Foundation.

Justin Browne Michigan State University

Date submitted: 01 Jul 2016

Electronic form version 1.4