Interpretation of the 17 MeV anomaly in $^8\text{Be}^*$ decay as light, weakly coupled new physics1 SUSAN GARDNER, University of Kentucky, JONATHAN FENG, BARTOSZ FORNAL, IFTAH GALON, JORDAN SMOLINSKY, TIM TAIT, University of California, Irvine, PHILIP TANEDO, University of California, Riverside — Recently a 6.8σ anomaly has been reported in the opening angle and invariant mass distributions of $e^+e^−$ pairs produced in ^8Be nuclear transitions (Krasznahorkay et al., PRL 116 (2016) 042501). We find that the data can be explained by a 17 MeV vector gauge boson X that is produced in the decay $^8\text{Be}^* \rightarrow ^8\text{Be}X$, with X decaying through $X \rightarrow e^+e^-$. The X boson mediates a new force with a characteristic range of 12 fm, and it has milli-charged couplings to up and down quarks and electrons, yielding a proton coupling that is suppressed relative to neutrons. We show that such a "protophobic" X boson is compatible with all other experimental constraints in this mass range and discuss how such an object can emerge from fundamental physics. The X boson may also alleviate the current 3.6σ discrepancy between the predicted and measured values of the muon’s anomalous magnetic moment.

1We acknowledge partial support from DOE ONP Contract No. DE-FG02-96ER40989 (S.G.) and NSF Grant No. PHY-1316792 (all others).