Abstract Submitted for the DNP16 Meeting of The American Physical Society

Decay spectroscopy of N < Z nuclei around $^{100}\mathbf{Sn}^1$ JOOCHUN (JA-SON) PARK, Univ of British Columbia, EURICA COLLABORATION — Many interesting topics in both nuclear structure and nuclear astrophysics converge on the doubly-magic nucleus ¹⁰⁰Sn and nuclei in its vicinity. Among them are the boundaries of proton dripline, the effect of pn interaction in self-conjugate nuclei, and the decay properties required for rp-process calculations in nucleosynthesis models. Despite many studies, experimental knowledge of these nuclides has remained scarce due to low production cross sections and a lack of intense beams. However, record quantities of exotic $N \simeq Z$ isotopes around ¹⁰⁰Sn were produced at RIKEN Radioactive Isotope Beam Factory, via fragmentation of a ¹²⁴Xe beam on a thin ⁹Be target. Based on the obtained data, ⁸⁹Rh and ⁹³Ag have been confirmed to be proton unbound [1]. Half-lives of isotopes near the proton dripline will be presented with improved precision compared to literature values. In addition, strategies to determine Q_{β} for ft values, and consequently the Fermi/Gamow-Teller transition strengths of these isotope decays will be discussed. [1] I. Celikovic et al., Phys. Rev. Lett. 116, 162501(2016).

¹Work supported by the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.

Joochun (Jason) Park Univ of British Columbia

Date submitted: 08 Jul 2016 Electronic form version 1.4