Abstract Submitted
for the DNP16 Meeting of
The American Physical Society

Decay spectroscopy of $N < Z$ nuclei around 100Sn

JOOCHUN (JASON) PARK, Univ of British Columbia, EURICA COLLABORATION — Many interesting topics in both nuclear structure and nuclear astrophysics converge on the doubly-magic nucleus 100Sn and nuclei in its vicinity. Among them are the boundaries of proton dripline, the effect of pn interaction in self-conjugate nuclei, and the decay properties required for rp-process calculations in nucleosynthesis models. Despite many studies, experimental knowledge of these nuclides has remained scarce due to low production cross sections and a lack of intense beams. However, record quantities of exotic $N \approx Z$ isotopes around 100Sn were produced at RIKEN Radioactive Isotope Beam Factory, via fragmentation of a 124Xe beam on a thin 9Be target. Based on the obtained data, 89Rh and 93Ag have been confirmed to be proton unbound [1]. Half-lives of isotopes near the proton dripline will be presented with improved precision compared to literature values. In addition, strategies to determine Q_β for ft values, and consequently the Fermi/Gamow-Teller transition strengths of these isotope decays will be discussed. [1] I. Celikovic et al., Phys. Rev. Lett. 116, 162501(2016).

1Work supported by the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.

Joochun (Jason) Park
Univ of British Columbia

Date submitted: 08 Jul 2016

Electronic form version 1.4