Charge-Asymmetry Dependence of Proton Elliptic Flow in 200 GeV Au+Au Collisions1 RACHEL SMITH, UCLA/UIUC, STAR COLLABORATION — The chiral magnetic wave (CMW) is predicted to manifest a finite electric quadrupole moment in the quark-gluon plasma produced in high-energy heavy-ion collisions \cite{Burnier2011}. This quadrupole moment generates a divergence in the azimuthal anisotropy (v_2) of positively and negatively charged particles such that $v_2(+) < v_2(-)$. This effect is proportional to the apparent charge asymmetry (A_{ch}) of particles in the same rapidity window. The A_{ch} dependence of v_2 has already been observed in the cases of charged pions and kaons \cite{Adamczyk2015, Shou2014}. We present preliminary STAR measurements of v_2 for protons and anti-protons as a function of A_{ch} from $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions for different centrality classes. The results are then compared with the previously reported results of pions and kaons. \cite{Burnier2011, Adamczyk2015, Shou2014}.

1For the STAR Collaboration