Abstract Submitted for the DNP16 Meeting of The American Physical Society

Chiral vibrations and collective bands in ¹⁰⁴Mo¹ BROOKS MU-SANGU, Furman University, E. H. WANG, C. J. ZACHARY, J. H. ELDRIDGE, J. H. HAMILTON, A. V. RAMAYYA, Vanderbilt University, J. O. RASMUSSEN, Y. X. LUO, Lawrence Berkelev National Laboratory, G. M. TER-AKOPIAN, YU. TS. OGANESSIAN, Joint Institute for Nuclear Research, S. J. ZHU, Tsinghua University — High spin states of the neutron-rich 104 Mo nucleus which is known to be triaxial have been reinvestigated by analyzing the γ -rays in the spontaneous fission of 252 Cf with Gammasphere. Both $\gamma - \gamma - \gamma$ and $\gamma - \gamma - \gamma - \gamma$ coincidence data were analyzed. A new $\Delta I=1$ band has been discovered. The new band is proposed to have a tentative 5^- band head and form a class of chiral doublets with another 4^- band previously found by our group [1]. Angular correlation measurements have been performed to determine spin and parity of the 4^- chiral band head. The energies of the two sets of chiral bands are very similar to the chiral bands observed in ¹⁰⁶Mo [2], e.g. the two 5⁻ levels in ¹⁰⁴Mo are at 2211.9 and 2276.8 keV with $\Delta E=65$ keV and in ¹⁰⁶Mo, 1952.4 and 2090.6 keV with $\Delta E=138$ keV [2]. Now at every spin 5⁻, 6^{-} , 7^{-} , 8^{-} , the separation energies of the same spin states are about a factor of two smaller than in 106 Mo. This indicates even better agreement with expectations for two sets of chiral bands. [1] E.F. Jones et al., Physics of Atomic Nuclei, Vol. 69, 1198 (2006). [2] S.J. Zhu et al., Eur. Phys. J. A 25, 459 (2005).

¹Furman Advantage, Furman University

Joseph Hamilton Vanderbilt University

Date submitted: 21 Jul 2016

Electronic form version 1.4