A Zero Degree Calorimeter for the High Radiation Environment at LHC

JUAN BOHORQUEZ, University of Illinois at Urbana-Champaign and University of Miami, ATLAS COLLABORATION — The two ATLAS Zero Degree Calorimeters (ZDC) are hadron calorimeters that measure the energy of non-colliding nuclear fragments thus providing information on the impact parameter in heavy ion collisions and input for the fast online selection of ultra-peripheral collisions. The ZDCs are located downstream of the straight ATLAS beam pipe section, 140 m from the interaction point. The ZDCs are sampling calorimeters and are composed of alternating layers of tungsten plates and quartz radiator. The extreme radiation environment (up to 20 Grad/yr) causes degradation of the optical performance of the quartz rods, leading to time dependent ZDC performance and frequent repair. A radiation hard ZDC design is being developed at UIUC based on circulating a liquid Cherenkov radiator replacing the present quartz rods. The upgrade aims at using the ZDC in LHC p+Pb runs for the study of nuclear effects in proton structure at low x. The radiation hardness of materials considered for the upgrade will be tested using a passive container that will be installed in place of the ZDC during the ongoing 2016 p+p run at the LHC. The details of the radiation test will be presented together with planned tests on the optical response and isotopic composition of candidate materials after irradiation.

1REU program supported by NSF Grant PHY-1062690

Juan Bohorquez
University of Illinois at Urbana-Champaign and University of Miami

Date submitted: 25 Jul 2016

Electronic form version 1.4