Development of the Off-line Analysis Code for GODDESS.¹
HEATHER GARLAND, Gettysburg College, JOLIE CIZEWSKI, ALEX LEPAILLEUR, DAVID WALTERS, Rutgers University, STEVE PAIN, Oak Ridge National Laboratory, KARL SMITH, University of Tennessee — Determining \((n,\gamma)\) cross sections on unstable nuclei is important for understanding the r-process that is theorized to occur in supernovae and neutron-star mergers. However, \((n,\gamma)\) reactions are difficult to measure directly because of the short lifetime of the involved neutron rich nuclei. A possible surrogate for the \((n,\gamma)\) reaction is the \((d,p\gamma)\) reaction; the measurement of these reactions in inverse kinematics is part of the scope of GODDESS — Gammasphere ORRUBA (Oak Ridge Rutgers University Barrel Array): Dual Detectors for Experimental Structure Studies. The development of an accurate and efficient off-line analysis code for GODDESS experiments is not only essential, but also provides a unique opportunity to create an analysis code designed specifically for transfer reaction experiments. The off-line analysis code has been developed to produce histograms from the binary data file to determine how to best sort events. Recent developments in the off-line analysis code will be presented as well as details on the energy and position calibrations for the ORRUBA detectors.

¹This work is supported in part by the U.S. Department of Energy and National Science Foundation.