Abstract Submitted for the DNP17 Meeting of The American Physical Society

Investigating and reducing the impact of nuclear reaction rate uncertainties on 44 Ti production in core-collapse supernovae. SHIV SUBEDI, ZACH MEISEL, Ohio University — Recent observational advances have enabled high resolution mapping of 44 Ti in core-collapse supernova (CCSN) remnants. Comparisons between observations and 3D models provide stringent constraints on the CCSN mechanism. However, recent work has identified several uncertain nuclear reaction rates that influence 44 Ti production in model calculations. We are using MESA (Modules for Experiments in Stellar Astrophysics) as a tool to investigate the previously identified sensitivities of 44 Ti production in CCSN to varied reaction rates. MESA is a code for modeling stellar evolution and stellar explosions in one-dimension. We will present the simulation results and our plans to reduce or remove the most significant uncertainties from (α, n) , (α, p) , (α, γ) , (p, n) and (p, γ) reaction rates using direct and indirect measurement techniques at Edwards Accelerator Lab at Ohio University.

¹U.S. DOE (Grant number: DE-FG02-88ER40387)

Shiv Subedi Ohio University

Date submitted: 12 Jun 2017 Electronic form version 1.4