Abstract Submitted for the DNP17 Meeting of The American Physical Society

Using Two-Proton Transfer to Study H and He Burning Reactions of Type-1 X-Ray Bursts¹ DOUGLAS SOLTESZ, THOMAS N. MASSEY, ALEXANDER VOINOV, ZACH MEISEL, Ohio Univ — The reaction rate of the 59 Cu(p, γ) 60 Zn has been identified to have a significant impact on the light curve of X-ray bursts, controlling the reaction flow out of the Ni-Cu cycle impacting the late-time light curve. Using two proton transfer, 58 Ni(3 He,n) 60 Zn can be used to study the 59 Cu(p, γ) 60 Zn reaction. We are currently using the neutron evaporation spectrum from 58 Ni(3 He,n) 60 Zn in order to extract the level density of 60 Zn and constrain 59 Cu(p, γ) 60 Zn. To augment the (3 He,n) technique for lower level-density compound nuclides, a silicon detector array is currently being developed for use in determining charged-particle decay branching ratios from discrete states. The present status of data analysis and detector development will be discussed, as well as future plans.

¹This work was supported in part by the U.S. DOE through Grant No. DE-FG02-88ER40387.

Douglas Soltesz Ohio Univ

Date submitted: 19 Jun 2017 Electronic form version 1.4