Abstract Submitted for the DNP17 Meeting of The American Physical Society

Cross-section measurement of ${}^{7}Be + d$ and ${}^{7}Li + d$ with ANASEN* and its implication in the Big Bang Nucleosynthesis.¹ NABIN RIJAL, INGO WIEDENHOVER, L. T. BABY, Florida State University, J. C. BLACKMON, Louisiana State University, G. ROGACHEV, Texas AM University — Astrophysically observed ⁷Li is 3-4 times less than predicted amount by current models of Standard Big Bang Nucleosynthesis (SBBN). The nuclear reaction $^{7}Be + d$ at energies relevant to SBBN, has been discussed as a possible means to destroy mass-7 nuclei. We investigated the ${}^{7}Be + d$ and it's mirror nuclear reaction ${}^{7}Li + d$ at SBBN energies using a radioactive ${}^{7}Be$ and stable ${}^{7}Li$ beam both in deuterium gas target inside ANASEN at Florida State University. ANASEN is an active target detector system which tracks the charged particles using a position sensitive proportional counter and 24-SX3 and 4-QQQ position sensitive Silicon detectors, all backed up by CsI detectors. ANASEN has wide angular coverage. The experiment measures a continuous excitation function by slowing down the beam in the target gas down to zero energy by using a single beam energy. Our set-up provides a high detection efficiency for all relevant reaction channels including $(d, p), (d, \alpha)$ and/or direct breakup that can destroy mass-7 nuclei in contrast to previous measurements. The preliminary results of these experiments along with details of ANASEN detector will be presented. *ANASEN: Array for Nuclear Astrophysics and Structure with Exotic Nuclei.

¹This work is supported by the US NSF MRI program, grant no. PHY-0821308 and NSF Grant PHY-1401574.

Nabin Rijal Florida State University

Date submitted: 18 Sep 2017

Electronic form version 1.4