10,11B(α,n)13,14N cross section measurements

QIAN LIU, University of Notre Dame and JINA, FEBBRARO MICHAEL, Oak Ridge National Laboratory, RICHARD DEBOER, WIESCHER MICHAEL, University of Notre Dame and JINA — 10,11B(α,n)13,14N have been identified as possible background sources for underground experiments at low E_α energy [1]. These reactions have been studied at University of Notre Dame’s Nuclear Science Laboratory using Santa Anna 5 MV accelerator. 11B(α,n)14N was measured with a 3He counter, and a good R-matrix fit was obtained, which shows our data in agreement with other published data. Measurement of 10B(α,n)13N was performed down to $E_\alpha = 0.57$MeV, with two deuterated liquid scintillators, EJ315 and EJ301D, and with the help of unfolding technique, neutron energy information can be extracted. EJ301D is a newly-developed neutron detector, with better pulse shape discrimination [2], and has been used to do angular distribution measurements. Additionally, the (α, $\alpha_1\gamma$) and (n, $p\gamma$) channels have been monitored independently by observation of 718keV γ transition in 10B and 3853keV γ transition in 13C. Preliminary analysis indicates the discovery of a new resonance in low energy region. [1] D.-M.Me et al. NIMA 606, 651(2009). [2] F.D Becchetti et al. NIMA 820, 112(2016).

Research supported by NSF PHY-1430152, and JINA PHY-1419765.

Qian Liu
University of Notre Dame and JINA

Date submitted: 21 Jun 2017