Abstract Submitted for the DNP17 Meeting of The American Physical Society

 10,11 B(α,n) 13,14 N cross section measurements 11 QIAN LIU, University of Notre Dame and JINA, FEBBRARO MICHAEL, Oak Ridge National Laboratory, RICHARD DEBOER, WIESCHER MICHAEL, University of Notre Dame and JINA — 10,11 B $(\alpha,n)^{13,14}$ N have been identified as possible background sources for underground experiments at low E_{α} energy [1]. These reactions have been studied at University of Notre Dame's Nuclear Science Laboratory using Santa Anna 5 MV accelerator. $^{11}B(\alpha,n)^{14}N$ was measured with a ^{3}He counter, and a good R-matrix fit was obtained, which shows our data in agreement with other published data. Measurement of ${}^{10}\mathrm{B}(\alpha,n){}^{13}\mathrm{N}$ was performed down to $E_{\alpha}=0.57\mathrm{MeV}$, with two deuterated liquid scintillators, EJ315 and EJ301D, and with the help of unfolding technique, neutron energy information can be extracted. EJ301D is a newly-developed neutron detector, with better pulse shape discrimination [2], and has been used to do angular distribution measurements. Additionally, the $(\alpha, \alpha_1 \gamma)$ and $(n, p\gamma)$ channels have been monitored independently by observation of 718keV γ transition in ¹⁰B and 3853keV γ transition in ¹³C. Preliminary analysis indicates the discovery of a new resonance in low energy region. [1] D.-M.Mei et al. NIMA 606, 651(2009). [2] F.D Becchetti et al. NIMA 820, 112(2016).

¹¹Research supported by NSF PHY-1430152, and JINA PHY-1419765.

Date submitted: 21 Jun 2017 Electronic form version 1.4