Abstract Submitted for the DNP17 Meeting of The American Physical Society

Gamma Ray Spectroscopy of 19 Ne near the 18 F+p Threshold MATTHEW HALL, DANIEL BARDAYAN, University of Notre Dame, GODDESS COLLABORATION — A direct way to test nova explosion models would be to observe gamma rays created in the decay of radioactive isotopes produced in the nova. One such isotope, 18 F, is believed to be the main source of observable 511-keV gamma rays. The main destruction mechanism of 18 F is thought to be the 18 F(p, α) 15 O reaction, and uncertainty in the reaction rate is attributed to uncertainties in the energies, spins, and parities of the nuclear levels in 19 Ne above the proton threshold. In an effort to understand these levels the 19 F(3 He,t) 19 Ne reaction was measured at Argonne National Laboratory using a 3 He beam. Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) was used to measure gamma rays from the de-excitation of 19 Ne in coincidence with the reaction tritons. Preliminary data from the experiment will be presented. This work was supported in part by National Science Foundation and U.S. Department of Energy.

Matthew Hall University of Notre Dame

Date submitted: 27 Jun 2017 Electronic form version 1.4