Abstract Submitted for the DNP17 Meeting of The American Physical Society

Nuclear structure of 76Se from inelastic neutron scattering measurements¹ SHARMISTHA MUKHOPADHYAY, Department of Chemistry Physics Astronomy, University of Kentucky, Lexington, KY — The low-lying, lowspin levels of 76 Se were studied with the $(n,n'\gamma)$ reaction. Gamma-ray excitation function measurements were performed at incident neutron energies from 2.0 to 3.5 MeV, and γ -ray angular distributions were measured at neutron energies of 2.4, 3.0 and 3.7 MeV. From these measurements, level spins, level lifetimes, γ -ray intensities, and multipole mixing ratios were determined. Interpreting the nuclear structure of the stable Se nuclei is challenging, with shape transitions, shape coexistence, and triaxiality in evidence. The low-lying structure of ⁷⁶Se appears to be the most vibrational of the Se isotopes, with a two-phonon $(0^+, 2^+, 4^+)$ triplet of collective states. In addition to these clearly collective excitations, we have identified and characterized a $4^+ \rightarrow 2^+ \rightarrow 0^+$ cascade of two E2 transitions built on the first excited 0^+ state at 1122 keV. The picture for ⁷⁶Se thus differs from ⁷²Se and ⁷⁴Se, and indicates that the configuration mixing of this coexisting band is less than exhibited in the other Se nuclei. Comparison of the low-lying level schemes of ⁷⁶Ge and ⁷⁶Se, the double-beta decay daughter, shows a marked difference.

¹This material is based upon work supported by the U.S. National Science Foundation under Grant No. PHY-1606890.

Sharmistha Mukhopadhyay
Dept. of Chemistry
Physics
Astronomy, University of Kentucky

Date submitted: 29 Jun 2017 Electronic form version 1.4