Studying ^{10}Be and ^{11}Be Halo States through the (p,d) Single-Neutron Transfer Reaction

KERI KUHN, FRED SARAZIN, Colorado School of Mines, TIGRESS COLLABORATION, (PCB)2 COLLABORATION — One-neutron transfer reactions are being used to study single-particle neutron states in nuclei. For one-neutron halo nuclei, such as ^{11}Be, the (p,d) reaction enables the removal of the halo neutron or of one of the core neutrons. This way, it is possible to simultaneously study the halo wavefunction of the ^{11}Be ground-state but also a possible excited halo state in ^{10}Be. The $^{11}\text{Be}(p, d)^{10}\text{Be}$ transfer reaction at 10 MeV/nucleon is being investigated at the TRIUMF-ISAC II facility with the Printed Circuit Board Based Charged Particle (PCB)2 array inside the TRIUMF ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS). The ground state and first excited state of ^{10}Be can be directly identified using deuteron identification and kinematics from the charged particle array, while the four excited states in ^{10}Be around 6 MeV, including the suspected halo state (2$^-$ state), are identified using coincident gamma rays from TIGRESS with the identified deuterons. Angular distributions for the ^{10}Be populated states will be shown along with their FRESCO fits.

1This work is partially supported by the US Department of Energy through Grant/Contract No. DE-FG03-93ER40789 (Colorado School of Mines)

Keri Kuhn
Colorado School of Mines

Date submitted: 30 Jun 2017
Electronic form version 1.4