Abstract Submitted for the DNP17 Meeting of The American Physical Society

Studying ¹⁰Be and ¹¹Be Halo States through the (p,d) Single-Neutron Transfer Reaction¹ KERI KUHN, FRED SARAZIN, Colorado School of Mines, TIGRESS COLLABORATION, $(PCB)^2$ COLLABORATION — Oneneutron transfer reactions are being used to study single-particle neutron states in nuclei. For one-neutron halo nuclei, such as ¹¹Be, the (p,d) reaction enables the removal of the halo neutron or of one of the core neutrons. This way, it is possible to simultaneously study the halo wavefunction of the ¹¹Be ground-state but also a possible excited halo state in ¹⁰Be. The ¹¹Be(p, d)¹⁰Be transfer reaction at 10 MeV/nucleon is being investigated at the TRIUMF-ISAC II facility with the Printed Circuit Board Based Charged Particle ((PCB)²) array inside the TRIUMF ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS). The ground state and first excited state of 10 Be can be directly identified using deuteron identification and kinematics from the charged particle array, while the four excited states in ¹⁰Be around 6 MeV, including the suspected halo state (2⁻ state), are identified using coincident gamma rays from TIGRESS with the identified deuterons. Angular distributions for the ¹⁰Be populated states will be shown along with their FRESCO fits.

¹This work is partially supported by the US Department of Energy through Grant/Contract No. DE-FG03- 93ER40789 (Colorado School of Mines)

Keri Kuhn Colorado School of Mines

Date submitted: 30 Jun 2017 Electronic form version 1.4