Three-fold increase of M1 strength in 40Ar at 10 MeV excitation energy. WERNER TORNOW, SEAN FINCH, FNU KRISHICHAYAN, Duke University and TUNL, ANTON TONCHEV, Lawrence Livermore National Laboratory — We reexamined the excitation energy region of 40Ar around 9.8 MeV with the goal of determining the known M1 strength located at 9.76 MeV [1] more accurately. The physics motivation was based on the fact that i) the neutrino-nucleus interaction cross section is proportional to the M1 strength of a nucleus, ii) DUNE, the Deep Underground Neutrino Experiment at SURF will be using liquid argon as detector medium, iii) the energy spectrum of supernova neutrinos is peaked at approximately 10 MeV. Mono-energetic and linearly polarized photons of 9.88 MeV were produced via Compton backscattering of 548 nm FEL photons from 543 MeV electrons at the High-Intensity γ-ray Source (HIγS) facility at TUNL. The 1.25 cm diameter photon beam with energy spread of 300 keV (FWHM) interacted with argon gas contained in a high-pressure cell. The cell was viewed with HPGe detectors placed at 90$^\circ$ relative to the incident photon beam in the horizontal and vertical planes to distinguish between E1 and M1 de-excitation γ-rays. Our re-measurement provided an increase in M1 strength by a factor of approximately 3, mostly due to the discovery that the known level in 40Ar at 9.84 MeV is of M1 character and not of E1 character, as previously thought. In addition to the already known M1 state at 9.76 MeV [1], we observed weaker M1 states at 9.70, 9.81, 9.87, and 9.89 MeV. [1] T.C. Li et al., Phys. Rev. C 73, 054306 (2006).