Identification of new transitions and levels in 163,165Gd and 163Tb from β decay studies

C.J. ZACHARY, Vanderbilt University, N.T. BREWER, Physics Division, Oak Ridge National Laboratory, E.H. WANG, Vanderbilt University, J.C. BATCHELDER, UNIRIB/Oak Ridge Associated Universities, R. GRZYWACZ, University of Tennessee, Knoxville, C.J. GROSS, K.P. RYKACZEWSKI, Physics Division, Oak Ridge National Laboratory, J.H. HAMILTON, A.V. RAMAYYA, Vanderbilt University — An investigation of γ-rays emitted following 163,165Eu β decay to 163,165Gd and 163Gd β decay to 163Tb has been performed. Data were collected at the LeRIBSS station of the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory with an array of four Clover HPGe detectors for γ-rays and 2 plastic scintillators for β detection. The γ-rays were identified as belonging to 163Gd, 165Gd, and 163Tb via mass selection and $\gamma-\gamma-\beta$ or $\gamma-\gamma$ coincidence. In total 71 new γ-ray transitions were observed in 163Gd and 3 new γ-ray transitions from 165Gd have been identified for the first time. Among the new transitions in 163Gd the data show evidence for transitions of near 50 keV and high energy transitions of up to 2 MeV depopulating from the same energy level. This feature is atypical in previous nuclear structure studies and needs further experimental and theoretical consideration. Additionally the first observation of 11 γ-rays from 163Tb, between already known levels, has been made.

Christopher Zachary
Vanderbilt University

Date submitted: 29 Jun 2017