Abstract Submitted for the DNP17 Meeting of The American Physical Society

Elastic and inelastic scattering of 134 Xe beams on C₂D₄ targets measured with GODDESS¹ HARRISON SIMS, JOLIE CIZEWSKI, ALEX LAPAILLEUR, HEATHER GARLAND, DAI XINATION, Rutgers University, STEVEN PAIN, Oak Ridge National Laboratory, MATTHEW HALL, Notre Dame University, GODDESS COLLABORATION — The GODDESS (Gammasphere-ORRUBA: Dual Detector for Experimental Structure Studies) coupling of the ORRUBA charged-particle array with Gammasphere is designed to enable highresolution particle-gamma measurements in inverse kinematics with radioactive beams. The high resolution and coverage of GODDESS allows for multiple reaction channels to be studied simultaneously. For the stable-beam commissioning of GODDESS, the 134 Xe(d,p γ) 135 Xe reaction was measured using a beam of 134 Xe at 8 MeV/A, delivered by the ATLAS facility at Argonne National Laboratory. The beam impinged on an 800 $\mu g/cm^2 C_2 D_4$ target, and charged particles were detected in the GODDESS silicon array between 15 and 165 degrees. Coincident gamma rays were measured with Gammasphere, with 10% efficiency at 1.3 MeV. In the detectors downstream of the target, elastically- and inelastically-scattered target ions (deuterium and carbon) were detected, populating the ground and low-lying excited states in ¹³⁴Xe. An overview of GODDESS will be presented, along with the analysis of the downstream data, including the differential scattering cross sections and population of collective states in 134 Xe.

¹Work supported in part by the U.S. D.O.E. and National Science Foundation.

Harrison Sims Rutgers University

Date submitted: 30 Jun 2017

Electronic form version 1.4